skip to main content


Search for: All records

Creators/Authors contains: "Huitink, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract There are many applications throughout the military and commercial industries whose thermal profiles are dominated by intermittent and/or periodic pulsed thermal loads. Typical thermal solutions for transient applications focus on providing sufficient continuous cooling to address the peak thermal loads as if operating under steady-state conditions. Such a conservative approach guarantees satisfying the thermal challenge but can result in significant cooling overdesign, thus increasing the size, weight, and cost of the system. Confluent trends of increasing system complexity, component miniaturization, and increasing power density demands are further exacerbating the divergence of the optimal transient and steady-state solutions. Therefore, there needs to be a fundamental shift in the way thermal and packaging engineers approach design to focus on time domain heat transfer design and solutions. Due to the application-dependent nature of transient thermal solutions, it is essential to use a codesign approach such that the thermal and packaging engineers collaborate during the design phase with application and/or electronics engineers to ensure the solution meets the requirements. This paper will provide an overview of the types of transients to consider—from the transients that occur during switching at the chip surface all the way to the system-level transients which transfer heat to air. The paper will cover numerous ways of managing transient heat including phase change materials (PCMs), heat exchangers, advanced controls, and capacitance-based packaging. Moreover, synergies exist between approaches to include application of PCMs to increase thermal capacitance or active control mechanisms that are adapted and optimized for the time constants and needs of the specific application. It is the intent of this transient thermal management review to describe a wide range of areas in which transient thermal management for electronics is a factor of significance and to illustrate which specific implementations of transient thermal solutions are being explored for each area. The paper focuses on the needs and benefits of fundamentally shifting away from a steady-state thermal design mentality to one focused on transient thermal design through application-specific, codesigned approaches. 
    more » « less
  2. Abstract

    The study and fundamental understanding of magnetic nanoparticle induction heating remains critical for the advancement of magnetic hyperthermia technologies. Complete characterization of not only the nanoparticles themselves but their interparticle behavior in a sample matrix is necessary to accurately predict their heating response. Herein, an in situ method for measuring the extent of nanoparticle clustering during induction heating using small‐angle and ultrasmall‐angle neutron scattering facilities at the National Institute of Standards and Technology Center for Neutron Research is described and implemented by comparing two sets of iron oxide nanoparticles with differing structures and magnetic properties. By fitting the scattering profiles to a piecewise model covering a wideQ‐range, the magnitude of nanoparticle clustering during induction heating is quantified. Observations of the low‐Qintensity before and after heating also allow for relative measurement of the cluster volume fraction during heating. The use of this method can prove to be advantageous in both developing more encompassing models to describe magnetic nanoparticle dynamics during heating as well as optimizing nanoparticle synthesis techniques to reduce aggregation during heating.

     
    more » « less